Fibonacci vectors.

Problem with a solution proposed by Arkady Alt , San Jose , California, USA Let $(\bar{a}_n)_{n\geq 0}$ be sequence of vectors defined recursively $\bar{a}_0 = \bar{a}, \bar{a}_1 = \bar{b}$ and $\overline{\mathbf{a}}_{n+1} = \overline{\mathbf{a}}_n + \overline{\mathbf{a}}_{n-1}.$ Prove that for any $n \in \mathbb{N}$ the sum of vectors $\bar{a}_0 + \bar{a}_1 + \ldots + \bar{a}_{4n+1}$ is collinear to one of the summand vectors. Find this vector and coefficient of collinearity. Solution. First note that $\bar{\mathbf{a}}_n = \bar{\mathbf{c}}_1 F_{n-1} + \bar{\mathbf{c}}_2 F_n$.

We have $\overline{\mathbf{a}}_0 = \overline{\mathbf{c}}_1 F_{-1} + \overline{\mathbf{c}}_2 F_0 \Leftrightarrow \overline{\mathbf{a}} = \overline{\mathbf{c}}_1, \overline{\mathbf{a}}_1 = \overline{\mathbf{c}}_1 F_0 + \overline{\mathbf{c}}_2 F_1 \Leftrightarrow \overline{\mathbf{b}} = \overline{\mathbf{c}}_2.$ Since $\bar{a}F_{n-1} + \bar{b}F_n$ coincide with \bar{a}_n if $n = 0,1$ and supposition $\overline{\mathbf{a}}_n = \overline{\mathbf{a}} F_{n-1} + \overline{\mathbf{b}} F_n$, $\overline{\mathbf{a}}_{n-1} = \overline{\mathbf{a}} F_{n-2} + \overline{\mathbf{b}} F_{n-1}$, $n \geq 1$ yields $\overline{\mathbf{a}}_{n+1} = \overline{\mathbf{a}} F_{n-1} + \overline{\mathbf{b}} F_n + \overline{\mathbf{a}} F_{n-2} + \overline{\mathbf{b}} F_{n-1} = \overline{\mathbf{a}} F_n + \overline{\mathbf{b}} F_{n+1}$ then by Math. Induction $\overline{\mathbf{a}}_n = \overline{\mathbf{a}} F_{n-1} + \overline{\mathbf{b}} F_n$ for all $n \in \mathbb{N} \cup \{0\}$.

Using such representation of $\bar{\mathbf{a}}_{n}$ we obtain $\,\sum\,$ *i*=0 $\sum^{4n+1}\overline{\mathbf{a}}_i = \overline{\mathbf{a}}\sum^{4n+1}$ *i*=0 $\sum^{4n+1} F_{i-1} + \overline{\mathbf{b}} \sum^{4n+1}$ *i*=0 4*n*1 $F_i =$

$$
\overline{\mathbf{a}} \sum_{i=0}^{4n+1} (F_{i+1} - F_i) + \overline{\mathbf{b}} \sum_{i=0}^{4n+1} (F_{i+2} - F_{i+1}) = \overline{\mathbf{a}} F_{4n+2} + \overline{\mathbf{b}} (F_{4n+3} - 1) = \frac{F_{4n+2}}{F_{2n+1}} (\overline{\mathbf{a}} F_{2n+1} + \overline{\mathbf{b}} F_{2n+2}) = \frac{F_{4n+2}}{F_{2n+1}} \overline{\mathbf{a}}_{2n+2}.
$$

Remark.

If we consider sum of any $4n + 2$ consecutive terms of this sequence

 $\overline{\bf{a}}_m + \overline{\bf{a}}_{m+1} + \ldots + \overline{\bf{a}}_{m+4n+1}$ then $\overline{\bf{a}}_m + \overline{\bf{a}}_{m+1} + \ldots + \overline{\bf{a}}_{m+4n+1} = \frac{F_{4n+2}}{F_{2n+1}} \overline{\bf{a}}_{m+2n+2}$ because $\overline{\mathbf{a}}_{m+n} = \overline{\mathbf{a}}_m F_{n-1} + \overline{\mathbf{a}}_{m+1} F_n$.